Norms of Möbius maps

نویسندگان

  • Alan F. Beardon
  • Ian Short
  • ALAN F. BEARDON
چکیده

We derive inequalities between the matrix, chordal, hyperbolic, three-point, and unitary norms of a Möbius map. These extend inequalities proved earlier by Gehring and Martin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Möbius Maps between Ultrametric Spaces Are Local Similarities

We show that Möbius maps between ultrametric spaces are local similarities. The proof is based on the notions of chordal ultrametric and normalization, which we introduce in this paper.

متن کامل

Nagata Dimension and Quasi-möbius Maps

We show that quasi-Möbius maps preserve the Nagata dimension of metric spaces, generalizing a result of U. Lang and T. Schlichenmaier (Int. Math. Res. Not. 2005, no. 58, 3625–3655).

متن کامل

Isometries for Ky Fan Norms Between Matrix Spaces

We characterize linear maps between different rectangular matrix spaces preserving Ky Fan norms.

متن کامل

Ela Norm Preservers of Jordan Products

Norm preserver maps of Jordan product on the algebra Mn of n×n complex matrices are studied, with respect to various norms. A description of such surjective maps with respect to the Frobenius norm is obtained: Up to a suitable scaling and unitary similarity, they are given by one of the four standard maps (identity, transposition, complex conjugation, and conjugate transposition) on Mn, except ...

متن کامل

Computing stabilized norms for quantum operations via the theory of completely bounded maps

The diamond and completely bounded norms for linear maps play an increasingly important role in quantum information science, providing fundamental stabilized distance measures for differences of quantum operations. Based on the theory of completely bounded maps, we formulate an algorithm to compute the norm of an arbitrary linear map. We present an implementation of the algorithm via Maple, dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010